SIDIS topics at the EIC

Charlotte Van Hulse UAH

Kinematic coverage for DIS

Helicity structure of the nucleon: gluons

Inclusive measurements

→ access to gluon spin

High e⁻ purity needed, e.g. ECCE via EMCAL: <2% π contamination for p>2 GeV

Helicity structure of the nucleon: gluons

Inclusive measurements

→ access to gluon spin

High e- purity needed, e.g. ECCE via EMCAL: <2% π contamination for p>2 GeV

Inclusive measurements

→ access to gluon spin

High e⁻ purity needed, e.g. ECCE via EMCAL: $_6$ <2% π contamination for p>2 GeV

$$A_{\parallel}^{h}(x_{B},Q^{2},z) = \frac{1}{P_{e}P_{p}} \frac{\stackrel{\longrightarrow}{\stackrel{N}{\stackrel{h}{\Longrightarrow}}} - \stackrel{\longleftarrow}{\stackrel{N}{\stackrel{h}{\Longrightarrow}}}}{\stackrel{\longrightarrow}{\stackrel{N}{\rightleftharpoons}}} (x_{B},Q^{2},z)$$

$$= D(y)A_{1}^{h}(x_{B},Q^{2},z) \qquad \left(z^{\frac{\mathrm{lab}}{E}}_{F_{\gamma*}}\right)$$

$$A_{\parallel}^{h}(x_{B},Q^{2},z) = rac{1}{P_{e}P_{p}} \frac{\stackrel{N^{h}}{\overrightarrow{\Rightarrow}} - \stackrel{N^{h}}{\overleftarrow{\Rightarrow}}}{\stackrel{N}{\overrightarrow{\Rightarrow}}} (x_{B},Q^{2},z)$$

$$= D(y)A_{1}^{h}(x_{B},Q^{2},z) \qquad (z^{\frac{\mathrm{lab}}{E}})$$

Semi-inclusive measurements, via good hadron PID

→ access to sea-quark spin

$$\propto \sum_{q} e_q^2 \left[\Delta q \otimes w_1 D_1^{q o h} \right]$$

$$A_{\parallel}^{h}(x_{B},Q^{2},z) = \frac{1}{P_{e}P_{p}} \frac{\stackrel{N^{h}}{\overrightarrow{\Rightarrow}} - \stackrel{N^{h}}{\overleftarrow{\Rightarrow}}}{\stackrel{L}{\overrightarrow{\Rightarrow}}} (x_{B},Q^{2},z)$$

$$= D(y)A_{1}^{h}(x_{B},Q^{2},z) \qquad (z^{\frac{\text{lab}}{E_{h}}})$$

Semi-inclusive measurements, via good hadron PID

→ access to sea-quark spin

$$\propto \sum_q e_q^2 \left[\Delta q \otimes w_1 D_1^{q o h} \right]$$

Beam polarisations assumed to be 70%.

Generated and reconstructed A₁

0.05 < z < 0.10

0.10 < z < 0.15

ECCE

0.15 < z < 0.20

General good agreement between reconstructed and generated asymmetry: moderate smearing.

0.011 < z < 0.05

0.5

Kinematic coverage and uncertainties

systematic uncertainty= |generated - reconstructed|

Kinematic coverage and uncertainties

6

Helicity structure of the nucleon via SIDIS

Reweighting of Pythia MC at NLO, using DSSV14 helicity distributions and DSS14 pion and kaon FFs

systematic uncertainty= |generated - reconstructed|

Helicity structure of the nucleon via SIDIS

$$\sigma^{h}(\phi,\phi_{S}) = \sigma_{UU}^{h} \left\{ 1 + 2\langle \cos(\phi) \rangle_{UU}^{h} \cos(\phi) + 2\langle \cos(2\phi) \rangle_{UU}^{h} \cos(2\phi) + \lambda_{l} 2\langle \sin(\phi) \rangle_{LU}^{h} \sin(\phi) + \lambda_{l} 2\langle \sin(\phi) \rangle_{UL}^{h} \sin(\phi) + 2\langle \sin(2\phi) \rangle_{UL}^{h} \sin(2\phi) + \lambda_{l} \left(2\langle \cos(0\phi) \rangle_{LL}^{h} \cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \right) \right] + \lambda_{l} \left(2\langle \sin(\phi - \phi_{S}) \rangle_{UT}^{h} \sin(\phi - \phi_{S}) + 2\langle \sin(\phi + \phi_{S}) \rangle_{UT}^{h} \sin(\phi + \phi_{S}) + 2\langle \sin(3\phi - \phi_{S}) \rangle_{UT}^{h} \sin(3\phi - \phi_{S}) + 2\langle \sin(\phi_{S}) \rangle_{UT}^{h} \sin(\phi_{S}) + 2\langle \sin(2\phi - \phi_{S}) \rangle_{UT}^{h} \sin(2\phi - \phi_{S}) + \lambda_{l} \left(2\langle \cos(\phi - \phi_{S}) \rangle_{LT}^{h} \cos(\phi - \phi_{S}) + 2\langle \cos(\phi_{S}) \rangle_{LT}^{h} \cos(\phi_{S}) \right] \right\}$$

$$\sigma^h(\phi,\phi_S) \ = \ \sigma^h_{UU} \left\{ 1 + 2\langle \cos(\phi) \rangle^h_{UU} \cos(\phi) + 2\langle \cos(2\phi) \rangle^h_{UU} \cos(2\phi) \right. \\ + \ \lambda_l \, 2\langle \sin(\phi) \rangle^h_{LU} \sin(\phi) \\ + \ S_L \left[2\langle \sin(\phi) \rangle^h_{UL} \sin(\phi) + 2\langle \sin(2\phi) \rangle^h_{UL} \sin(2\phi) \right. \\ + \ \lambda_l \left(2\langle \cos(0\phi) \rangle^h_{LL} \cos(0\phi) + 2\langle \cos(\phi) \rangle^h_{LL} \cos(\phi) \right) \right] \\ + \ \lambda_l \left(2\langle \sin(\phi - \phi_S) \rangle^h_{LL} \sin(\phi - \phi_S) + 2\langle \sin(\phi + \phi_S) \rangle^h_{UT} \sin(\phi + \phi_S) \right. \\ + \ 2\langle \sin(3\phi - \phi_S) \rangle^h_{UT} \sin(3\phi - \phi_S) + 2\langle \sin(\phi_S) \rangle^h_{UT} \sin(\phi_S) \\ + \ 2\langle \sin(2\phi - \phi_S) \rangle^h_{UT} \sin(2\phi - \phi_S) \\ + \ 2\langle \sin(2\phi - \phi_S) \rangle^h_{LT} \cos(\phi - \phi_S) \\ + \ 2\langle \cos(\phi_S) \rangle^h_{LT} \cos(\phi_S) + 2\langle \cos(2\phi - \phi_S) \rangle^h_{LT} \cos(2\phi - \phi_S) \right) \right] \right\}$$

Azimuthal amplitudes related to structure functions F_{XY} :

$$2\langle \sin(\phi + \phi_S) \rangle_{UT}^h = \epsilon F_{UT}^{\sin(\phi + \phi_S)}$$

Azimuthal amplitudes related to structure functions F_{XY} :

$$2\langle \sin(\phi + \phi_S) \rangle_{UT}^h = \epsilon F_{UT}^{\sin(\phi + \phi_S)}$$

Azimuthal amplitudes related to structure functions F_{XY} : $2\langle \sin(\phi + \phi_S) \rangle_{UT}^h = \epsilon F_{UT}^{\sin(\phi + \phi_S)}$ $F_{XY} \propto \mathcal{C} \left[\text{TMD PDF}(x, k_{\perp}) \times \text{ TMD FF } (z, p_{\perp}) \right]$ TMD FF TMD PDF

Azimuthal amplitudes related to structure functions F_{XY} :

nucleon polarization

 g_{1T}^{\perp}

 $|h_{1T}h_{1T}^{\perp}$

 f_{1T}^{\perp}

Azimuthal amplitudes related to structure functions F_{XY} : $2\langle\sin(\phi+\phi_S)\rangle_{UT}^h=\epsilon\,F_{UT}^{\sin(\phi+\phi_S)}$

 $F_{XY} \propto \mathcal{C} \left[\text{TMD PDF}(x, k_{\perp}) \times \text{ TMD FF } (z, p_{\perp}) \right]$

quark polarization

zation		U	L	Т
polari	U	f_1		h_1^\perp
nucleon	L		g_{1L}	h_{1L}^{\perp}
unc	Т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$

quark polarization

zation		U	L	Т
oolarizatio	U	D_1		H_1^{\perp}

hadron pola

Spin-independent TMD PDF

Fit:

A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDF

Fit:

A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDF: impact of EIC

DIS variables via scattered lepton

$$Q^2 > 1 \text{ GeV}^2$$

 $0.01 < y < 0.95$
 $W^2 > 10 \text{ GeV}^2$

$$5 \times 41 \text{ GeV}^2$$

 $10 \times 100 \text{ GeV}^2$
 $18 \times 100 \text{ GeV}^2$
 $18 \times 275 \text{ GeV}^2$

systematic uncertainty= |generated - reconstructed|

JHEP, 06:137, 2020

$$\mathcal{L}=10~{\rm fb}^{-1}$$
 for each collision energy

TMD evolution of the Sivers TMD PDF

$$\mathcal{C}[f_{1T}^{\perp} \times D_1^{q \to h}]$$

Decrease of asymmetry with increasing $Q^2 \rightarrow$ need high precision (<1%) to measure asymmetry at high Q^2

Generated and reconstructed Sivers asymmetry

Reweighting of Pythia at LO using Sivers extraction from existing SIDIS and e+e- data

General good agreement between reconstructed and generated asymmetry: moderate smearing.

 10^{-4}

 10^{-3}

 10^{-2}

 10^{-1}

Uncertainties Sivers asymmetry

$$\mathcal{C}[f_{1T}^{\perp} \times D_1^{q \to h}]$$

Beam polarisations assumed to be 70%.

systematic uncertainty= |generated - reconstructed|

Additionally: 3% scale uncertainty

- Low x and Q²: small statistical uncertainty. High precision is needed since asymmetry at low x and Q² well below 1%.
- For not too large z and P_T, statistical uncertainty well below 1%.
- Systematic uncertainties increase with z and P_T: likely because of higher smearing effects.

Uncertainties Sivers asymmetry

2% point-to-point uncorrelated uncertainty 1.5% scale uncertainty

Q² dependence of the Sivers asymmetry

Intermediate and high x: good coverage in Q², with complementarity in coverage at different COM energies.

Sivers TMD PDF: impact of EIC

Q=2 GeV

DIS variables via scattered lepton

$$Q^2 > 1 \text{ GeV}^2$$

 $0.01 < y < 0.95$
 $W^2 > 10 \text{ GeV}^2$

$$5 \times 41 \text{ GeV}^2$$

 $10 \times 100 \text{ GeV}^2$
 $18 \times 100 \text{ GeV}^2$
 $18 \times 275 \text{ GeV}^2$

$$\begin{array}{ccc} 5\times41~\mathrm{GeV}^2\\ 10\times100~\mathrm{GeV}^2\\ 18\times100~\mathrm{GeV}^2\\ 18\times275~\mathrm{GeV}^2 \end{array} \qquad \mathcal{L}=10~\mathrm{fb}^{-1}~\mathrm{for~each~collision~energy}$$

Transversity: impact of EIC

Parametrisation from J. Cammarota, Phys. Rev. D 102(5):054002, 2020.

DIS variables via scattered lepton

$$Q^2 > 1 \text{ GeV}^2$$
 $5 \times 41 \text{ GeV}^2$ $0.01 < y < 0.95$ $10 \times 100 \text{ GeV}^2$ $18 \times 100 \text{ GeV}^2$ $\mathcal{L} = 10 \text{ fb}^{-1}$ for each collision energy $18 \times 275 \text{ GeV}^2$ 20

Back-to-back dihadron production in eA

Access to the Weizsäcker-Williams gluon distribution

Sensitive to saturation effects

 Complementarity region covered by dihadron and jet production

Summary and outlook

Semi-inclusive measurements at EIC provide access to a range of information:

- Helicity distributions of sea and valence quarks
- 3D (spin-dependent) momentum structure of the nucleon, and study of TMD evolution
- Probe gluon saturation

Full GEANT simulations have been performed by ATHENA and ECCE, which demonstrate the EIC capabilities to perform measurements with a large kinematic coverage and with high precision. This is needed in order to allow for a precise determination of the various distributions.

Next steps:

- reference design optimisation and consolidation phase, with joints efforts from ATHENA and ECCE.
- towards the formation of a new detector 1 collaboration.

Back up

Sivers: statistical and systematic uncertainties

Sivers: statistical and systematic uncertainties

Sivers: Q² coverage

